首页> 外文OA文献 >Efficient Strategies for Calculating Blockwise Likelihoods under the Coalescent
【2h】

Efficient Strategies for Calculating Blockwise Likelihoods under the Coalescent

机译:计算聚结下块状似然的有效策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The inference of demographic history from genome data is hindered by a lack of efficient computational approaches. In particular, it has proven difficult to exploit the information contained in the distribution of genealogies across the genome. We have previously shown that the generating function (GF) of genealogies can be used to analytically compute likelihoods of demographic models from configurations of mutations in short sequence blocks (Lohse et al. 2011). Although the GF has a simple, recursive form, the size of such likelihood calculations explodes quickly with the number of individuals and applications of this framework have so far been mainly limited to small samples (pairs and triplets) for which the GF can be written down by hand. Here we investigate several strategies for exploiting the inherent symmetries of the coalescent. In particular, we show that the GF of genealogies can be decomposed into a set of equivalence classes which allows likelihood calculations from non-trivial samples. Using this strategy, we automated blockwise likelihood calculations for a general set of demographic scenarios in Mathematica. These histories may involve population size changes, continuous migration, discrete divergence and admixture between multiple populations. To give a concrete example, we calculate the likelihood for a model of isolation with migration (IM), assuming two diploid samples without phase and outgroup information. We demonstrate the new inference scheme with an analysis of two individual butterfly genomes from the sister species Heliconius melpomene rosina and Heliconius cydno.
机译:缺乏有效的计算方法阻碍了从基因组数据推断人口统计学历史。特别地,已证明难以利用整个基因组中家谱分布中包含的信息。先前我们已经表明,家谱的生成函数(GF)可用于根据短序列区块中的突变配置来分析计算人口统计学模型的可能性(Lohse等,2011)。尽管GF具有简单的递归形式,但是这种似然性计算的规模随着个人数量迅速激增,并且此框架的应用到目前为止主要限于可以为其写下GF的小样本(成对和三胞胎)用手。在这里,我们研究了几种利用合并的固有对称性的策略。特别是,我们表明家谱的GF可以分解为一组等价类,这些类允许从非平凡样本中进行似然计算。使用这种策略,我们为Mathematica中的一组一般人口场景自动进行了逐块似然计算。这些历史可能涉及人口规模的变化,持续的迁徙,离散的分歧以及多个人口之间的混合。举一个具体的例子,我们假设有两个没有相位和外群信息的二倍体样品,通过迁移(IM)来计算分离模型的可能性。我们通过分析姊妹物种Heliconius melpomene rosina和Heliconius cydno的两个个体蝴蝶基因组,证明了新的推理方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号